巫春玲, 吕晶晶, 相里康, 孟锦豪, 黄鑫蓉, 张震
摘要 (
)
PDF全文 (
)
可视化
收藏
在传统电动汽车锂电池预测中,往往将健康状态SOH(state-of-health)预测视作一个整体,进而给出单一SOH预测结果。但在汽车实际运行中,直接进行SOH的单一预测误差大,预测效果不好。为了提高电动汽车电池的SOH预测精度,提出了1种基于变分模态分解和麻雀搜索算法优化的核极限学习机集成模型的新预测方法VMD-SSA-KELM。该方法通过变分模态分解电池SOH序列,降低SOH回升的影响;同时利用Person相关法减少噪声的影响,提高预测的准确性;引入核极限学习机KELM,在保留极限学习机优点的基础上,提高了预测的精度。基于4辆电动汽车的运行数据对提出的模型进行验证,结果表明与VMD-DBO-KELM、VMD-POA-KELM、VMD-KELM、VMD-ELM模型相比,所提模型的预测趋势与原数据趋势一致,其他模型的结果波动较大,新模型预测的均方根误差在0.20%内,预测精度更高,预测效率更快,所用时间更短,故可以证明所提方法具有更高的准确性和鲁棒性。