• 首页|关于本刊|编委阵容|投稿指南|收录情况|订阅指南|征稿启事|诚邀专家|学术道德|English
  • E-mail:
  • 密 码: 
  •    
  • 用户名:
  • 密 码: 
  •    
最新录用 更多>>
高文凯,郑岳久,许霜霜,周龙.基于增量误差的卡尔曼滤波算法全区间荷电状态估计[J].电源学报,2019,17(5):162-169
基于增量误差的卡尔曼滤波算法全区间荷电状态估计
Entire Range State-of-charge Estimation Based on Incremental Error Using Kalman Filtering Algorithm
投稿时间:2017-12-11  修订日期:2018-04-20
DOI:10.13234/j.issn.2095-2805.2019.5.162
中文关键词:  电池管理系统  等效电路模型  卡尔曼滤波算法  锂离子电池  低荷电状态区间
英文关键词:battery management system  equivalent circuit model  Kalman filtering algorithm  lithium battery  low state-of-charge(SOC) range
基金项目:国家自然科学基金青年基金资助项目(51507102);上海市教育委员会上海市教育发展基金会"晨光计划"资助项目(16CG52);汽车安全与节能国家重点实验室开放基金资助项目(KF16022)
作者单位E-mail
高文凯 上海理工大学机械工程学院, 上海 200093  
郑岳久 上海理工大学机械工程学院, 上海 200093
清华大学汽车安全与节能国家重点实验室, 北京 100084 
yuejiu_zheng@163.com 
许霜霜 上海理工大学机械工程学院, 上海 200093  
周龙 上海理工大学机械工程学院, 上海 200093  
摘要点击次数: 133
全文下载次数: 77
中文摘要:
      在电池管理系统领域,精确的荷电状态SOC(state-of-charge)估计是众多状态估计中最基础的技术之一。但在一些特定的SOC区间段内,便于实际应用的等效电路模型并不能很好地等效电池的特性,故基于传统卡尔曼滤波算法的SOC估计会出现精度下降的问题。提出一种基于增量误差的卡尔曼滤波算法,通过离线分析等效电路模型在各个SOC区间段内的性能优劣,得到各个SOC区间的噪声协方差控制表;将噪声协方差应用于对应的SOC区间段内,从而实现对全区间SOC的精确估计。实验表明在SOC低于20%的区间内,采用基于增量误差的卡尔曼滤波算法可以大大提高SOC估计精度。
英文摘要:
      In the field of battery management system, the accurate estimation of state-of-charge(SOC) is one of ba-sic techniques among many state estimations. However, the equivalent circuit model(ECM), which is convenient for pra-ctical applications, cannot well simulate the battery characteristics in some specific SOC ranges. Therefore, the accuracy of SOC estimation based on the traditional Kalman filtering algorithm will decrease. The accurate estimation in the entire SOC range is realized using a novel Kalman filtering algorithm based on incremental error. Based on the off-line analysis of the ECM performance in different SOC ranges, the control table for noise covariance in each SOC range is obtained. The specific noise covariance is applied in the corresponding SOC range so that the entire SOC range is accurately estimated using the proposed Kalman filtering algorithm. Experimental results showed that the estimation accuracy in the range with SOC lower than 20% can be significantly improved using the Kalman filtering algorithm based on incremental error.
查看全文  查看/发表评论  下载PDF阅读器
关闭