• 首页|关于本刊|编委阵容|投稿指南|审稿指南|订阅指南|征稿启事|诚邀专家|学术道德|English
  • E-mail:
  • 密 码: 
  •    
  • 用户名:
  • 密 码: 
  •    
最新录用 更多>>
程泽,李智,孙幸勉.考虑松弛和滞回的锂离子电池建模及SOC估计[J].电源学报,2019,17(1):87-94
考虑松弛和滞回的锂离子电池建模及SOC估计
Modeling of Lithium-ion Battery Considering Relaxation and Hysteresis and State of Charge Estimation
投稿时间:2017-05-17  修订日期:2018-08-17
DOI:10.13234/j.issn.2095-2805.2019.1.87
中文关键词:  锂离子电池  SOC估计  滞回  松弛  自校正模型
英文关键词:lithium-ion battery  state of charge(SOC) estimation  hysteresis  relaxation  self-tuning model
基金项目:国家自然科学基金资助项目(61374122)
作者单位E-mail
程泽 天津大学电气自动化与信息工程学院, 天津 300072 chengze@tju.edu.cn 
李智 天津大学电气自动化与信息工程学院, 天津 300072  
孙幸勉 天津大学电气自动化与信息工程学院, 天津 300072  
摘要点击次数: 396
全文下载次数: 201
中文摘要:
      针对锂离子电池在电流状态突然变化时产生的松弛现象和滞回现象,在分析了电池等效电路模型的基础上,引入线性滤波器和滞回模块,建立了电池的自校正模型。通过恒流脉冲实验和动态应力工况测试验证自校正模型在对电池电压特性跟随的可靠性,并在该模型的基础上使用有限差分扩展卡尔曼滤波FDEKF(finite difference extended Kalman filter)算法实现了电池的荷电状态SOC(state of charge)估计。实验分析表明,自校正模型能较好地体现电池的动态特性,并使SOC估计保持很好的精度。
英文摘要:
      When the current state of a lithium-ion battery changes suddenly, relaxation and hysteresis will appear. In this paper, based on the analysis of an equivalent circuit model of battery, a linear filter and a hysteresis module were introduced, and a self-tuning model of battery was established. Then, constant-current pulse tests and dynamic stress test(DST) were conducted to verify the reliability of the self-tuning model in following the voltage characteristics of the battery. On the basis of the proposed model, the finite difference extended Kalman filter(FDEKF) algorithm was used to estimate the state of charge(SOC) of battery. Experimental results showed that the self-tuning model can better reflect the dynamic characteristics of the battery while keeping the SOC estimation with high accuracy.
查看全文  查看/发表评论  下载PDF阅读器
关闭